XYLAN COATINGS COMPARISON | Product | Low
Friction | Non-
stick | Corrosion
Resist. | Abrasion
Resist. | D.F.T. per coat | # Coats | Cure Temp. °C/#mins (PMT) | Working
Temp. °C
min/max | | Water-
borne | Colours | Comments/Uses | |---|-----------------|---------------|----------------------|---------------------|---|------------------------|----------------------------|--------------------------------|---------------------------|-----------------|--------------------------------|---| | Dykor 202/204/205 | NNS | NNS | 10 | 7 | 100 ± 25μ | 1 of
each | 275-290/ | -60 to
+150 | 4 | 54 | Dark grey | PVDF dispersions. Multicoat system for chemical & corrosion resistance. Typical applications: chemical processing equipment, valves, pipe fittings, clutch discs, etc. | | Dykor 810
over 71-050 | NNS | 10 | 8 | 7 | 4060 = 12.5±2.5μ
810 = 35±5μ | 1 of each
(or more) | 330-380 | -195 to
+260 | Powder o | | Primer
dependent | Powder (PFA) fluoropolymer coating with good chemical/corrosion resistance and electrical insulating properties. Typical applications: chemical processing equipment, food industry, etc. | | Dykor 815
over Xylan 4060 | NNS | 10 | 10 | 7 | $4060 = 12.5 \pm 2.5 \mu$
$815 = 85 \pm 5 \mu$ | Up to 8 | 340-400 | -200 to
+260 | Powder of prin | | Primer
dependent | High-build PFA powder coating up to 500µ in 8 coats. Pinhole-free at max film build (10KV). Typical application: chemical processing equipment. | | Dykor 830 | NNS | NNS | 10 | 7 | 175 ± 25µ | Up to 5 | 275 | -40 to
+150 | Pow | der | Un-
pigmented | Chemical-resistant, PVDF-based powder coating designed for chemical processing equipment. | | Dykor 875
over Xylan 4060 | NNS | NNS | 10 | 7 | 4060 = 12.5±2.5μ
875 = 100 ± 10μ | Up to 8 | 330-400 | -40 to
+250 | Powder over wet
primer | | Un-
pigmented | High-build MFA coating designed for applications where high chemical protection is required, for example chemical processing equipment. | | Eclipse
7050/7252/7353 | NNS | 8 | NNS | 10 | Total = 39.5 ±4.5μ | 1 of
each | 425-440/
5min | -195 to
260 | | V | Metallic
range | Internally-reinforced, high-temperature resistant, food-safe nonstick with excellent abrasion resistance. Typical applications include industrial bakeware and food-processing equipment such as hoppers, moulds etc | | Xylan 1010 | 10 | 2 | 4 | 3 | 20 ± 5μ | 1 or
more | 220-345/
20-5min | -195 to
+260 | Both available | | No light shades | General purpose coating for dry lubrication in high-speed and/or low-
temperature environments. Typical applications include rotary actuators,
bearings, carburettors & garden tools. | | Xylan 1014 | 8 | NNS | 5 | 4 | 20 ± 5μ | 1 or
more | 220-345/
20-5min | -195 to
+260 | Both av | ailable | No light shades | Improved abrasion resistance over Xylan 1010. Typical applications: hinge pins, piston casings, compressors, fasteners, etc. | | Xylan 1052 | 6 | NNS | 4 | 4 | 15 ± 5μ | 1 or
more | 220-345/
20-5min | -195 to
+260 | V | 3 | Dark only | Extreme pressure capability. Coating contains MoS _o /PTFE. Typical applications: bearings, valve springs, sealing rings, etc. | | Xylan 1070 | 8 | NNS | 6 | 4 | 20 ± 5μ | 1 or
more | 205-345/
30-5min | -195 to
+260 | √ | | No light shades | Stud-bolt coating used over phosphate or other pretreatment to achieve up to 3,000 hrs salt-spray. Typical application: threaded fasteners. | | Xylan 1212 | NNS | NNS | 8 | 4 | 20 ± 5μ | 1 or
more | 175-205/
60-15min | -20 to
+180 | | ٧ | No light shades | Waterborne thin-film barrier coating with excellent corrosion resistance, idea where tolerance is critical. Typical applications: offshore components. | | Xylan 1213 | 8 | NNS | 6 | 4 | 17.5 ± 2.5μ | 1 | 205-275/
10-5min | -20 to
+180 | | V | Grey | Waterborne, dry-film lubricant designed for high-pressure/low-speed applications. Typical applications: offshore mechanisms. | | Xylan 1270 | 5 | NNS | 7 | 3 | 20 ± 5μ | 1 or
more | 180-260/
30-5min | -50 to
+200 | V | | Range | Tough coating offering excellent protection against atmospheric corrosion.
Ideal for fasteners, saw blades, industrial files, etc. | | Xylan 1311 | NNS | NNS | 9 | 8 | 22.5 ± 2.5μ | 1 or
more | 375-400/
15-5min | -20 to
+230 | | √ | Dark only | Similar to 1331 with less PTFE for when abrasion resistance is more
important than lubrication. Typical application: offshore blow-out preventors. | | Xylan 1331 | 9 | NNS | 9 | 6 | $22.5 \pm 2.5 \mu$ | 1 | 375-400/
15-5min | -20 to
+230 | | ٧ | Range | Dry-film lubricant containing PPS and PTFE for outstanding wear, abrasion
and chemical resistance. Typical application: offshore down-hole tools | | Xylan 1424 | 8 | NNS | 8 | 4 | 17.5 ± 2.5μ | 1 or
more | 205-275/ 15-
5min | -20 to
+180 | | ٧ | Range incl.
off-white | Low-friction coating with excellent corrosion resistance. Designed for fasteners, piston casings, compressors, etc. | | Xylan 1425 | 6 | NNS | 6 | 4 | 17.5 ± 2.5μ | 1 or
more | 205-275/ 15-
5min | -20 to
+180 | | ٧ | Dark only | Low-friction coating with extreme pressure capability. Contains MoS ₃ /PTFE. Typical applications include offshore valves. | | Xylan 1427 | 6 | NNS | 8 | 4 | 17.5 ± 2.5μ | 1 or
more | 205-275/ 15-
5min | -20 to
+180 | | V | Range incl.
off-white | Low-friction coating with excellent corrosion resistance. Designed for fasteners etc. to reduce make-up and break-out torque. | | Xylan 1514 | 9 | 3 | 3 | 4 | 20 ± 5μ | 1 or
more | 220-275/
30-5min | -40 to
+220 | ٧ | | Range incl.
white | Decorative coating with low-friction properties. Good UV and abrasion resistance. Typical applications: cooling fans, light fittings, personal-care products, radomes, I-O drives, etc. | | Xylan 1756 over
4289 | 4 | 9 | 8 | 4 | $4289 = 12 \pm 3\mu$
$1756 = 15 \pm 5\mu$ | 3 or
more | 375-420/
10-5min | -195 to
+205 | | ٧ | Green, blue,
brown | Multicoat FEP system, typically used for mould release and industrial bakeware. | | Xylan 4090 | NNS | NNS | 6 | 4 | $20 \pm 5\mu$ | 1 | 220-345/
20-5min | -195 to
+285 | V | | Red and
clear | Optional primer for use under the 1000 series of coatings. Note: clear coating also known as Primer P92 | | Xylan 5110 | 6 | 2 | 2 | 3 | 6 ± 1μ | 2 or 3 | 220-315/
20-5min | -195 to
+260 | | V | No light shades | Dip/spin: low-friction, high-temperature-resistant coating designed for small components such as screws and threaded fasteners. | | Xylan 5164 | 8 | 3 | 3 | 4 | 7 ± 1μ | 2 or
more | 220-275/ 30-
5mins | -40 to
+220 | √ | 0 | Range incl.
white | Dip/spin: low-friction coating for bulk application to wood screws, threaded fasteners, etc. Excellent UV resistance. | | Xylan 5230 | 3 | NNS | 7 | 3 | $7 \pm 1\mu$ | 2 or 3 | 180-260/
30-5min | -50 to
+200 | V | 20 | Range | Dip/spin: controlled friction to suit torque tension, 240 hours salt-spray over phosphate. Fasteners, etc., especially for the automotive industry. | | Xylan 5250 | NNS | NNS | 7 | 3 | 7 ± 1μ | 2 or 3 | 190-220/
30-10min | -50 to
+200 | V | | Range | Dip/spin: Corrosion-resistant coating for fasteners, screws, stamps, etc. especially for the building, roofing and appliance industries. | | Xylan 5611 | NNS | NNS | 8 | 6 | 7 ± 1μ | 2 or 3 | 205-220/
10-5min | -55 to
+175 | V | 33 | Silver grey | Dip/spin: zinc-rich coating offering excellent corrosion resistance for
fasteners, screws, transmission shafts, etc., especially for the building,
roofing and appliance industries. | | Xylan 8110 | 10 | 3 | 4 | 3 | 20 ± 5μ | 1 or
more | 315-345/
15-5min | -195 to
+260 | V | ψ. | Dark only | Food-safe version of Xylan 1010. Typical applications: food chutes, sweet moulds, knife blades. | | Xylan 8221/8224 | NNS | 8 | 2 | 5 | $8221 = 10 \pm 2\mu$
$8224 = 20 \pm 1\mu$ | 1 of
each | 425-430/
5min | -195 to
+260 | | V | Metallic
range | Two-coat, food-safe fluoropolymer system for nonstick. Typical applications include mould release and industrial bakeware. | | Xylan 8810 | NNS | 7 | NNS | 3 | 22.5 ± 2.5μ | 1 or
more | 375-420/
15-5min | -40 to
+230 | V | | Range, incl.
metallics | Excellent nonstick, stain-resistant food-safe coating. Typical applications include mould release, kettle elements, heater sealing bars, etc. | | Xylan 8840 | NNS | 7 | NNS | 6 | 15 ± 2μ | 1 or
more | 375-420/
15-5min | -40 to
+205 | V | | Range | Excellent nonstick, easy-clean, food-safe coating for mould release in both
engineering (e.g. for tyres/polyurethane) and food industries (e.g.
bakeware) | | Xylan 8870 | NNS | 7 | NNS | 7 | 15 ± 2μ | 1 or
more | 375-420/
15-5min | -40 to
+205 | √ | | Range | Reinforced food-safe coating for excellent release and abrasion resistance.
Typical applications include mould release in a range of industries. | | Xylan XL
71-050/72-151/72-
252/73-353 | NNS | 10 | 8 | 10 | Total = $63 \pm 7\mu$ | 1 of
each | 400-430/
15-5min | -195 to
260 PFA
205 FEP | (except | 72-252 | Metallic
pewter | Internally-reinforced, high-temperature resistant, food-safe nonstick designed for high quality industrial bakeware. Choice of topcoats: PFA (higher use temperature) or FEP (for high sugar-content baking). | | Xylar 1 | NNS | NNS | 9 | 8 | 20 ± 5μ | 1 or
more | 343-400/
30-15min | -40 to
+535 | | ٧ | Silver | Aluminium "cermet" coating. Excellent chemical, corrosion and abrasion resistance at extreme temperatures. Ideal for aerospace and marine industry components. | | Xylar 101 | NNS | NNS | NNS | 9 | 10 ± 2μ | 1 or
more | 343-400/
30-15min | -40 to
+870 | | 1 | Black
brown, olive | Sealer/topcoat to enhance performance of Xylar 1 (to 535°C max.). Can be used a
a single product to 870°C. Typical applications: marine hardware, car exhausts. | | Xylar 2 | NNS | NNS | 9 | 8 | 25 ± 5μ | 2 or
more | 343-400/
30-15min | -40 to
+535 | | ٧ | Silver | As Xylar 1, but higher film builds possible. Typical applications: aerospace and marine industry components, automotive engine and exhaust parts. | | Xylar 201 | 10 | 8 | NNS | 8 | 25 ± 5μ | 1 | 343-400/
30-15min | -40 to
+260 | | V | Green,
black, off-
white | Excellent ceramic-based low-friction coating with extreme pressure capability. Can be used as a one-coat or as a topcoat over Xylar 1. Typical application: industrial moulds (for non-food applications). Xylar 201 has the best "hot hardness" of all known fluoropolymer coatings. | Where: 1 = Low and 10 = High; NNS = Not Normally Specified for this Coating; ** = Until Complete Melt flow is achieved